skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stanley, Lauren_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Chromosomal inversion polymorphisms are ubiquitous across the diversity of diploid organisms and play a significant role in the evolution of adaptations in those species. Inversions are thought to operate as supergenes by trapping adaptive alleles at multiple linked loci through the suppression of recombination. While there is now considerable support for the supergene mechanism of inversion evolution, the extent to which inversions trap pre‐existing adaptive genetic variation versus accumulate new adaptive variants over time remains unclear. In this study, we report new insights into the evolution of a locally adaptive chromosomal inversion polymorphism (inv_chr8A), which contributes to the adaptive divergence between coastal perennial and inland annual ecotypes of the yellow monkeyflower,Mimulus guttatus. This research was enabled by the sequencing, assembly and annotation of new annual and perennial genomes ofM. guttatususing Oxford Nanopore long‐read sequencing technology. In addition to the adaptive inv_chr8A inversion, we identified three other large inversion polymorphisms, including a previously unknown large inversion (inv_chr8B) nested within inv_chr8A. Through population genomic analyses, we determined that the nested inv_chr8B inversion is significantly older than the larger chromosomal inversion in which it resides. We also evaluated the potential role of key candidate genes underlying the phenotypic effects of inv_chr8A. These genes are involved in gibberellin biosynthesis and anthocyanin regulation. Although little evidence was found to suggest that inversion breakpoint mutations drive adaptive phenotypic effects, our findings do support the supergene mechanism of adaptation and suggest it may sometimes involve nested inversions that evolve at different times. 
    more » « less